
ADEL@OKE 2017: A Generic Method for Indexing
Knowlege Bases for Entity Linking

Julien Plu1, Raphaël Troncy1, Giuseppe Rizzo2

1 EURECOM, Sophia Antipolis, France
julien.plu|raphael.troncy@eurecom.fr

2 ISMB, Turin, Italy
giuseppe.rizzo@ismb.it

Abstract. In this paper we report the participation of ADEL to the OKE 2017
challenge. In particular, an adaptive entity recognition and linking framework
that combines various extraction methods for improving the recognition level and
implements an efficient knowledge base indexing process to increase the perfor-
mance of the linking step. We detail how we deal with fine-grained entity types,
either generic (e.g. Activity, Competition, Animal for Task 2) or domain spe-
cific (e.g. MusicArtist, SignalGroup, MusicalWork for Task 3). We also show
how ADEL can flexibly link entities from different knowledge bases (DBpedia
and MusicBrainz). We obtain promising results on the OKE 2017 challenge test
dataset for the first three tasks.

Keywords: Entity Recognition, Entity Linking, Feature Extraction, Indexing, OKE
Challenge, ADEL

1 Introduction

In this paper, we present our participation to the first three tasks of the OKE 2017 chal-
lenge, namely: 1) Focused NE Identification and Linking; 2) Broader NE Identification
and Linking; 3) Focused Musical NE Recognition and Linking. The participation to
these tasks has required to develop a system that can extract a broad range of entity
types: generic in the Task 1, fine-grained in Task 2 or music-specific in Task 3. This has
also triggered to develop a system that can handle multiple knowledge bases, such as
DBpedia and MusicBrainz, to link the spotted candidates to referent resources.

We further develop the ADEL framework that is particularly suited to be adaptable
to each of the requirements [3,4].

We improve the entity extraction and recognition process that includes a dictionary
extractor that handles regular expressions.

We also propose a more sophisticated indexing process that allows to index the
content of any RDF-based knowledge base such as DBpedia or Musicbrainz.

This paper mainly focuses on entity recognition and knowledge base indexing. En-
tity recognition refers to jointly performing the appropriate extraction and typing of
mentions. Extraction is the task of spotting mentions that can be entities in the text
while Typing refers to the task of assigning them a proper type. Linking refers to the



disambiguation of mentions in a targeted knowledge base. It is also often composed of
two subtasks: generating candidates and ranking them accordingly to various scoring
functions or link them to NIL if no candidates are found. Following the challenge re-
quirements, we make use of the 2016-04 snapshot of DBpedia and a 2016-12 snapshot
of Musicbrainz as the targeted knowledge bases.

The rest of the paper is structured as follows: Sections 2 introduce our approach,
Section 3 proposes the evaluations of this approach over each test dataset of OKE2017.
Finally, conclusions and future work are discussed in Section 4.

2 Approach

In this section, we describe how we extract mentions from texts that are likely to be
selected as entities by the Extractor Module. After having identified candidate men-
tions, we resolve their potential overlaps using the Overlap Resolution Module. Then,
we describe how we disambiguate candidate entities coming from the extraction step.
First, we create an index over the English DBpedia snapshot (version 2016-04) using
the Indexing Module. This index is used to select possible candidates with the Can-
didate Generation Module. If no candidates are provided, this entity is passed to the
NIL Clustering Module, while if candidates are retrieved, they are given to the Linker
Module.

Extractor Module. We make use of five kinds of extractors: i) Dictionary, ii) POS
Tagger, iii) NER, iv) Date, and v) Number. Each of these extractors run in parallel.
At this stage, an entity dictionary reinforces the extraction by bringing a robust spot-
ting for well-known proper nouns or mentions that are too difficult to be extracted
for the other extractors. We have developed a new approach for the dictionary ex-
traction that consists in using a generic SPARQL query that retrieves all entity labels
given a list of entity types. We developed a common API for these extractors based on
Stanford CoreNLP [2] that is publicly available at https://github.com/jplu/
stanfordNLPRESTAPI.

Indexing Module. An index can be seen as a two-dimensional array where each
row is an entity in the index and each column is a property that describes the entity.
Indexing the English DBpedia snapshot and retaining only properties that have literal
values yields 281 columns. Once we have this index, we can search for a mention in
this index and retrieve entity candidates. Searching, by default, over all columns (or
properties used in the knowledge base), negatively impacts the performance of the in-
dex in terms of computing time. In order to optimize the index, we have developed
a method that maximizes the coverage of the index while querying a minimum num-
ber of columns (or properties) [5]. For the DBpedia version 2016-04, there are ex-
actly 281 properties that have literal values, while our optimization produced a reduced
list of 8 properties: dbo:wikiPageWikiLinkText, dbo:wikiPageRedirects, dbo:demonym,
dbo:wikiPageDisambiguates, dbo:birthName, dbo:alias, dbo:abstract and rdfs:label.
This optimization drastically reduces the time of queryig by a factor of 4, in detail from
4 seconds to less than one second on a server that has 256GB of RAM and a Intel Xeon
CPU E5-2670 v3 @ 2.30GHz. The source code of this optimization is also available3.

3 https://gist.github.com/jplu/a16103f655115728cc9dcff1a3a57682

https://github.com/jplu/stanfordNLPRESTAPI
https://github.com/jplu/stanfordNLPRESTAPI
https://gist.github.com/jplu/a16103f655115728cc9dcff1a3a57682


Previously, we were using an index stored in Lucene. We have, however, observed un-
expected behavior from Lucene such as not retrieving resources that partially match a
query even if the number of results was not bound due to the lack of parameters and
control of what can be searched on. The index is now built using Elasticsearch as a
search engine that provides better scoring results. The indexing of a knowledge base
follows a two-step process: i) extracts the content of a knowledge base, and creates the
Elasticsearch index; ii) runs the optimization method in order to get the list of columns
that will be used to query the index.

NIL Clustering Module. We propose to group the NIL entities (emerging entities)
that may identify the same real-world thing. The role of this module is to attach the
same NIL value within and across documents. For example, if we take two different
documents that share the same emerging entity, this entity will be linked to the same
NIL value. We can then imagine different NIL values, such as NIL 1, NIL 2, etc. We
perform a string strict matching over each possible NIL entities (or between each token
if it is a multiple token mention). For example, in sentence 23 of the datased used for
Task 1, both the mention “Sully” and “Marine Jake Sully” will be linked to the same
NIL entity.

Linker Module. This module implements an empirically assessed function that
ranks all possible candidates given by the Candidate Generation Module:

r(l) = (a · L(m, title) + b ·max(L(m,R)) + c ·max(L(m,D))) · PR(l) (1)

The function r(l) is using the Levenshtein distance L between the mention m and the
title, and optionally, the maximum distance between the mention m and every element
(title) in the set of Wikipedia redirect pages R and the maximum distance between the
mention m and every element (title) in the set of Wikipedia disambiguation pages D,
weighted by the PageRank PR, for every entity candidate l. The weights a, b and c are
a convex combination that must satisfy: a + b + c = 1 and a > b > c > 0. We take
the assumption that the string distance measure between a mention and a title is more
important than the distance measure with a redirect page that is itself more important
than the distance measure with a disambiguation page. In DBpedia not all pages have
redirect or disambiguation pages associated, for this reason the two last elements of the
formula are optional. This means that if a page does not have redirect pages, only the ti-
tle and the disambiguation pages are evaluated, and the same logic is applied when only
disambiguation pages exist, and finally, if no redirect and disambiguation pages exist,
only the title is taken into account. In order to also apply this formula with Musicbrainz
entities, we have computed a PageRank for each of them.

3 Results and Discussion

In the OKE2107 challenge the evaluation for each task had two different scenarios: A)
the goal is to evaluate the performance of the linking by achieving the highest F1-score,
B) the goal is to evaluate the best ratio β = F1−score

runtime of the system. The official OKE
2017 released scores for Scenario A are reported in Table 1. For Scenario B, the results
are reported in Table 2. The comparison in each table is done with FOX [7,8] which was
the baseline for each task. We have used the same ADEL configuration for each task:



1. Extraction: three different extractors, i) Stanford NER with the 3-class, 4-class and
7-class models, ii) Stanford NER with the model trained with the training set of the
corresponding task, and iii) a specific gazetteer made for the corresponding task.

2. Index: we use the DBpedia index for the two first tasks, and the Musicbrainz one
for the third task. The Elasticsearch query we used to get the candidate has been
adapted for each task.

3. Linking: we used the same weights for all tasks: a = 16
21 , b = 4

21 , and c = 1
21 .

This ultimately generated three different ADEL instances, one for each task.

ADEL FOX
Precision Recall F1 Precision Recall F1

Task 1
Recognition 91.62 83.20 87.21 92.47 80.58 86.12

D2KB 40.15 27.82 32.87 61.96 41.47 49.69
A2KB 33.24 30.18 31.64 53.61 46.72 49.93

Task 2
Recognition 87.68 78.57 82.88 95.9 65.80 78.05

D2KB 39.93 25.75 31.32 63.42 35.28 45.34
A2KB 31.4 28.14 29.68 56.15 38.53 45.7

Task 3
Recognition 35.03 74.57 47.66 63.02 49.21 55.27

Typing 64.33 64.91 64.62 0 0 0
RT2KB 26.99 27.24 27.12 0 0 0

Table 1: Results for Scenario A over the OKE2017 datasets for the three tasks.

Concerning Task 1 and Task 2, the first thing we observe is the efficiency of the
extraction part in ADEL, that of course can be leveraged depending the combination of
extractors we use.

We can also observe that this extraction depends of what we want to extract, the
more complex are the types to extract the more difficult is the extraction, and ADEL
is robust against that, because despite the different number of entity types that must be
extracted in Task 1 and Task 2, the F1 score shows a small difference between the two
tasks and then proves ADEL robustness compared to FOX.

Task 3 provides fine grained and specific entity types (artists, songs and albums),
which bring a major issue: the name of an artist, a song or an album can be anything,
including, for instance, a punctuation mark4, for this reason we have preferred to con-
figure ADEL to have a high recall.

For all tasks we observe a significant drop in performance at the linking stage. The
linking formula is sensitive to the noise brought at the extraction step since this module
does not take into account the entity context but instead relies on a combination of string
distances and the PageRank global score. For example, in Task 1 dataset, sentence 1, the
string distance score over the title, the redirect and the disambiguation pages between
the mention Trump and the entity candidate db:Trumpet is higher than the correct
entity candidate db:Donald Trump.

4 https://musicbrainz.org/work/25effd3c-aada-44d1-bcbf-ede30ef34cc0



ADEL FOX
β F1-score points avg Millis Per Doc β F1-score points avg Millis Per Doc

Task 1
overall 0.0009 114.58 231314.48 0.0036 363.25 179287.18

1 0.045 16.42 4613.25 0.024 50.17 26612.1
2 0.01 16.49 20851.94 0.027 55 25808.69
3 0.003 14.39 60331.46 0.011 55.43 63613.36
4 0.00095 13.81 182078.99 0.0043 50.088 146824.36
5 0.00074 19.65 337788.62 0.0028 53.63 240083.76
6 0.00047 17.52 462000.34 0.0019 50.11 330158.19
7 0.00038 16.3 567022.28 0.0015 48.82 420001.39

Task 2
overall 0.00078 102.48 261497.17 0.0015 208.85 245985.25

1 0.032 15.30 5849.78 0.01 29.28 35759.16
2 0.011 14.9 17087.79 0.0085 26.71 39090.31
3 0.002 15.26 93618.21 0.004 34.96 109790.31
4 0.00088 18.17 258233.61 0.0014 26.72 237480.25
5 0.00059 16.71 399959.27 0.0011 30.63 347780.25
6 0.00041 12.06 538963 0.00092 31.76 433000.36
7 0.00023 10.086 746879.68 0.0007 28.8 518996.09

Table 2: Results for Scenario B over the OKE2017 datasets for the two first tasks.

We also evaluate the efficiency of our candidate generation module that, given a
mention, should always provide the correct disambiguation link among a set of candi-
dates. The evaluation is done as follows: from a training dataset, we perform a SPARQL
query in order to get all mentions with their disambiguation link; then, for each men-
tion, we query our index by using the list of columns listed in Section 2 to get a set of
candidates and we check if the proper link is contained in that set. The minimum index
of the correct link in this set is 1 while the maximum index is 1729 for Task 1, 1943
for Task 2, and 673 for Task 3. For Task 1 the recall@1729 is 94.65%, for Task 2 the
recall@1943 is 90.22%, and for Task 3 the recall@673 is 97.32%. Most often, when
the correct link is not retrieved, it is because the mention does not appear in the content
of the queried columns, such as 007’s5 in the sentence 37 of Task 1 dataset.

Regarding Scenario B in Table 2, we can see that ADEL has a drop of performance
in terms of average millis per document from the 4th phase. In order to understand
why this drop, we have profiled ADEL to detect the possible bottlenecks using the test
dataset of Task 1. All the identified bottlenecks here are mostly observations that affect
the runtime performance of ADEL. We succeeded to identify two significant bottle-
necks: i) the network latency, and 2) the candidate generation. The first is due to a high
usage of external systems via HTTP queries (all the extractors and Elasticsearch), the
sum of the latency of each HTTP query penalizes the runtime of ADEL. Unfortunately,
we cannot really do something to solve this as it is an ADEL requirement to use exter-
nal systems. Finally, the second bottleneck is Elasticsearch, arriving to a certain number
of queries our ADEL instance gets stuck and starts to queue the queries. To solve this
problem, we have developed a new architecture for our cluster by making each node

5 http://dbpedia.org/resource/James_Bond_(literary_character)

http://dbpedia.org/resource/James_Bond_(literary_character)


able to be queried via a load balancer system. This solution allows to increase the num-
ber of queries run in the same time without being queued. This new architecture has
divided the time to get our candidates by almost three (approximately one division per
node).

4 Conclusion and Future Work

We have presented an entity extraction and linking framework that can be adapted to
the entity types that have to be extracted and adapted to the knowledge base used to
link the spotted entities. We have applied this framework to 3 tasks of the OKE 2017
challenge. While both recognition and the candidate generation processes provide good
performance, the linking step is currently the main bottleneck in our approach. The per-
formance drops significantly at this stage mainly due to a fully unsupervised approach.

We plan to investigate a new method that would modify Deep Structured Semantic
Models [1] to make it compliant with knowledge bases and use it as a relatedness score
between each candidate to build a graph composed of these candidates where each edge
is weighted by this score. The path that has the highest score is chosen as the good one
to disambiguate each extracted entity. This method should be agnostic to any knowledge
base as it will use the relations among the entities. We also plan to align the entity types
from different NER models, exploiting and extending previous work [6], in order to
have a more robust recognition step. The association of multiples types of extraction
techniques makes our approach extracting a significant amount of false positives. For
this reason, we are also investigating to add a pruning step at the end of the process
in order to reduce the amount of false positives. Finally, to improve the extraction by
dictionary, we plan to make an automated regular expression generator that, given an
entity, will match as many cases as possible. SPARQL queries using those seeds will
then generate a dictionary composed of regular expressions that would match multiple
derivation of the entities.

Acknowledgments

This work was primarily supported by the innovation activity PasTime (17164) of EIT
Digital (https://www.eitdigital.eu).

References

1. P.-S. Huang, X. He, J. Gao, L. Deng, A. Acero, and L. Heck. Learning Deep Structured
Semantic Models for Web Search Using Clickthrough Data. In 22nd ACM International Con-
ference on Information & Knowledge Management (CIKM), 2013.

2. C. D. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. J. Bethard, and D. McClosky. The Stan-
ford CoreNLP Natural Language Processing Toolkit. In Association for Computational Lin-
guistics (ACL) System Demonstrations, 2014.

3. J. Plu, G. Rizzo, and R. Troncy. A Hybrid Approach for Entity Recognition and Linking. In
12th European Semantic Web Conference (ESWC), Open Knowledge Extraction Challenge,
2015.

https://www.eitdigital.eu


4. J. Plu, G. Rizzo, and R. Troncy. Enhancing Entity Linking by Combining NER Models. In
13th European Semantic Web Conference (ESWC), Open Knowledge Extraction Challenge,
2016.

5. J. Plu, G. Rizzo, and R. Troncy. ADEL: ADaptable Entity Linking. Semantic Web Journal
(SWJ), Special Issue on Linked Data for Information Extraction, (under review), 2017.

6. G. Rizzo, M. van Erp, and R. Troncy. Inductive Entity Typing Alignment. In 2nd International
Workshop on Linked Data for Information Extraction (LD4IE), 2014.

7. R. Speck and A. Ngomo.
8. R. Usbeck, A. Ngomo, M. Röder, D. Gerber, S. Coelho, S. Auer, and A. Both. Agdistis

- graph-based disambiguation of named entities using linked data. In The Semantic Web –
ISWC 2014, 2014.


	ADEL@OKE 2017: A Generic Method for Indexing Knowlege Bases for Entity Linking

